

SISTEMAS.DE.PROTECÇÃO.CONTRA.DESCARGAS.ATMOSFÉRICAS

Desde a sua fundação, em 2001, a QEnergia é uma empresa reconhecida na comercialização de equipamento para verificação de instalações eléctricas e de medida da resistência de terra. A actividade desenvolvida nesta área permitiu-nos verificar que os sistemas de protecção contra descargas atmosféricas, bem como as redes de terras, eram em muitos dos casos um foco de problemas.

Neste contexto a QEnergia lançou em Portugal no ano de 2004 o sistema de protecção contra descargas atmosféricas loniflash, um sistema inovador no segmento dos pára-raios.

Este lançamento contribuiu para o mercado conhecer a experiência da QEnergia, no domínio das soluções reparadoras na protecção das pessoas e equipamentos. Esta área de actividade tornou a QEnergia conhecida na comunidade electrotécnica nacional, para a qual realizou seminários técnicos onde já participaram mais de 2000 pessoas, desde empresas instaladoras, organismos de certificação, universidades e empresas ligadas ao projecto eléctrico e engenharia.

No domínio dos clientes industriais a QEnergia adquiriu competências na análise, verificação das condições de segurança das instalações eléctricas e no diagnóstico de problemas.

Na procura constante de introdução de soluções, tecnologias e serviços, a QEnergia, oferece na área da protecção contra descargas atmosféricas:

- Soluções em pára-raios com avanço à ignição Ioniflash
- Soluções para construção de Gaiolas de Faraday
- Soluções para constituição e verificação dos sistemas de terras
- Soluções em protecção contra sobretensões
- Auditoria e inspecção a SPDA
- Avaliação das condições de segurança e funcionamento de instalações eléctricas utilizando os mais avancados métodos e equipamentos de medida
- Recolha certificada de sistemas de pára-raios radioactivos
- Formação

A QEnergia convida-o a descobrir este novo catálogo de 2007, onde apresentamos os materiais, tecnologias, métodos e soluções de verificação para a protecção efectiva contra descargas atmosféricas e a correcta construção de sistemas de redes de terra.

Estamos certos de que esta informação permitirá ajudar todos os nossos clientes a encontrar a forma de implementar as melhores medidas e soluções na área da protecção.

José Caçote Dir. Comercial e Marketing

Paulo Almeida Gestor de Produto

(NIDIOE	
ÍNDICE 04 Contago	2
01. Captores	3
02. Acessórios de Baixada	11
03. Condutores	17
04. Redes de Terras	21
05. Protecção Contra Sobretensões	25
06. Medida Eléctrica e Serviços	27
Exemplos de aplicação	30

01. Captores

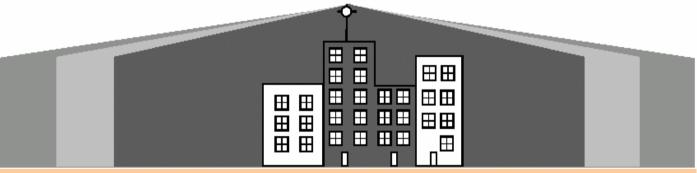
IONIFLASH — Um Pára-raios Inovador

QEnergia apresenta no mercado um novo pára-raios. O elemento diferenciador e fundamental é a geometria da cabeça captora que permite melhorar significativamente o tempo de avanço à ignição. Isto quer dizer que o IONIFLASH tem a capacidade de antecipar a emissão do traçador ascendente na presença de um campo eléctrico que precede uma descarga, permitindo assim a formação de um canal ionizado e um caminho para essa descarga.

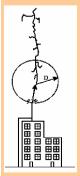
Chama-se a esta capacidade o avanço à ignição ΔT. O raio de protecção que se consegue depende principalmente desta característica.

O IONIFLASH está homologado, em laboratório certificado, com um ΔT=129 μs.

Neste catálogo encontra as indicações para a execução de um projecto de protecção adequado.


Um raio de protecção muito alargado

principal vantagem na utilização pára-raios com avanço à ignição é а possibilidade de construir de forma simples sistemas de protecção muito completos.


O IONIFLASH revolucionou o conceito dos pára-raios com

avanço à ignição (também designado por pára-raios ionizantes), aumentando drasticamente o tempo de avanço emissão do tracador da ascendente. A área protegida aumenta praticamente na mesma proporção.

Repare-se neste exemplo. Este edifício tem 40 m de altura e a largura máxima é de cerca de 60m. A sombreado mostra-se a área protegida para 3 distintos níveis de protecção. Ao nível do solo obtém-se uma área protegida com mais de 200 metros de diâmetro.

Avanço à ignição - Princípio de funcionamento

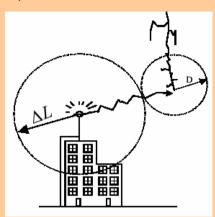
odos os sistemas de protecção contra descargas atmosféribaseiam-se mesmo princípio. Um elevadíssimo campo eléctrico origina na periferia dos condutores ligados à terra uma (chamado envolvente um traçador descendente que se esfera propaga por impulsos em direcção desenvolve-se solo. Transporta cargas eléctricas que vão responsáveis pelo aumento do corrente de descarga. campo eléctrico.

ionização do ar primeiro elemento a entrar em contacto efeito com a esfera de influência do coroa). Da nuvem para o solo parte traçador descendente (raio desta D). Neste um traçador ascendente que vai abrir um canal ser ionizado por onde se fecha a

Quanto mais cedo o pára-raios Interessa que seja o pára-raios o emitir esse traçador ascendente,

mais longe está a extremidade do traçador descendente, ou seja, maior é o raio de protecção proporcionado pelo pára-raios.

É este o princípio em que se baseiam os pára-raios com avanço à ignição ou os páraraios ionizantes (esta expressão é muito usada em Portugal, embora quanto а nós. incorrectamente, porque ionização é resultado do efeito de coroa e não de qualquer acção desencadeada pelo páraraios).


A figura pretende ilustrar este conceito. É como se existisse uma esfera fictícia à volta do

pára-raios de raio ΔL. Quando D representa o raio da esfera tracador caminho para a descarga ao plano considerado. atmosférica.

A NF C 17-102 (1995) foi a primeira norma que estabeleceu este princípio, quantificando o raio de protecção associado a um pára-raios com avanço à ignição. Actualmente já existe documento normativo português neste âmbito, a NP 4426.

$$Rp = \sqrt{h(2D-h) + \Delta L(2D + \Delta L)}$$

esta esfera fictícia encontra a fictícia na ponta do traçador esfera fictícia de raio D na ponta descendente e é função do risco descendente, esperado. ΔL é directamente estabelecem-se as condições para proporcional ao tempo de avanço o fecho do canal ionizado e um à ignição e h representa a altura

Cálculo do raio de protecção assegurado pelo IONIFLASH

omo já vimos acima, a NP 4426 estabelece o raio de protecção obtido com um páraraios com avanço à ignição.

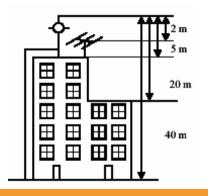
$$Rp = \sqrt{h(2D-h) + \Delta L(2D+\Delta L)}$$

Em que :
 $\Delta L = v(m/\mu s) \Delta T(\mu s)$

O IONIFLASH é um pára-raios homologado com $\Delta T = 129 \,\mu s$.

 $y = 1 m/\mu s$ é um valor praticamente constante que mede a velocidade média do traçador ascendente e descendente.

Em 2001 foi apensa à NFC17-102 um parágrafo interpretativo que determina que quando o avanço à ignição é superior a 60 μ s, o valor de Δ T a considerar no cálculo do R_p é 60 µs. Embora esta interpretação não faça parte da UNE 21186, nem da Norma Portuguesa, a QEnergia adopta-a porque ela favorece a segurança de uma instalação.


O raio de protecção do IONIFLASH é apresentado no quadro seguinte.

O exemplo que se junta pode esclarecer eventuais dúvidas.

O ponto mais elevado deste pára-raios edifício é 0 IONIFLASH. 0 primeiro elemento a proteger é a antena. colocada a 2 m da ponta do pára-raios. Neste nível o raio de protecção é de 32, 40 ou 44m, consoante o nível de protecção. Ao nível da cobertura (a 5 m da ponta do pára-raios) o raio de protecção é de 79, 97 ou 107m.

Ao nível do piso intermédio (a 20m da extremidade do páraraios) o raio de protecção é de 80, 102 ou 113m, e ao nível do solo (a 40m da extremidade do pára-raios) o raio de protecção é de 77, 105 ou 118 metros consoante o nível de protecção escolhido.

Altura da ponta do Pára Raios	Raio de protecção assegurado pelo IONIFLASH <i>R_p</i> (m)		
h (m)	Nível I, D=20	Nível II, D=45	Nível III, D=60
2	32	40	44
3	48	59	65
4	65	78	86
5	79	97	107
6	79	97	107
8	79	98	108
10	79	99	109
20	80	102	113
40	77	105	118
60	69	104	120

Avaliação do Risco - Cálculo do diâmetro da esfera fictícia D

A protecção contra descargas atmosféricas é sempre dimensionada e calculada em função do risco. É este o objectivo do cálculo de D, diâmetro da esfera fictícia na extremidade do traçador descendente.

O objectivo de um bom sistema "é alcançar um nível de protecção estatisticamente satisfatório, não podendo, contudo, assegurar-se em absoluto que a ocorrência de circunstâncias excepcionais não possa vir a causar danos no interior do volume protegido." (Guia técnico de Pára-raios, DGE, 4ª edição, Julho 2000). É a avaliação do risco que nos permite dimensionar um sistema de protecção eficaz. O dimensionamento faz-se em função da probabilidade de existir uma descarga atmosférica num determinado local, em função do valor patrimonial do sistema protegido e em função do risco de perda de vidas humanas.

Existem vários documentos que nos ajudam neste cálculo. A IEC 62305-2, que dedica mais de 100 páginas a este assunto, é um documento muito completo (e complexo). Aqui usamos de forma simplificada as recomendações da NP 4426.

Frequência esperada de impactos directos sobre uma estrutura

É o primeiro parâmetro a calcular. Depende da densidade de impactos por km² (deduzido a partir do índice quereaúnico), do tipo de estrutura, e da implantação (no alto de uma montanha por exemplo).

Frequência aceitável de impactos sobre uma estrutura

Este é o 2º parâmetro a calcular. Tem em conta um coeficiente estrutural, o conteúdo da estrutura, como é ocupada e as consequências de um eventual impacto.

Determinação do nível de protecção - Cálculo de D

Estamos agora em condições de determinar o nível de protecção. Neste documento não pretendemos indicar pormenorizadamente os processos de cálculo, mas parece-nos útil apresentar alguns exemplos em diferentes localizações. As dimensões do edifício são sempre referidas comprimento x largura x altura.

Caso '

Edifício isolado de 30m x 20m x 10m

Localização - Arredores Lisboa. Local isolado. Valor comum, ocupado normalmente, sem necessidade de continuidade de serviço

Resultado: Nível de protecção II, D = 45m

Caso 2

O mesmo edifício nas mesmas condições na região do Porto (O Porto é das regiões do país com maior nº de descargas por km²)

Resultado: Nível de protecção I, D = 20m (este caso está na transição entre o nível II e I . Optamos assim pelo nível I)

Caso 3

Uma casa de habitação 15m x 11m x 6m

Localização – perto de Coimbra numa zona florestal

Resultado: Nível de protecção III, D = 60m

Como facilmente se compreende é muito difícil generalizar. No entanto podemos definir algumas regras.

Para edifícios com altura inferior a 7 metros, normalmente ocupados, na zona de Lisboa, Ribatejo e litoral Alentejano, considerar um nível de protecção III, D=60m. Para o mesmo edifício na região entre Porto e Viana do Castelo, na região entre Coimbra e Viseu, considerar um nível de protecção II, D= 45. Edifícios com altura entre 7 a 15 metros, normalmente ocupados, considerar Nível II na maior parte do país e Nível I nos locais onde existem mais descargas por km². Se este edifício tiver uma ocupação permanente e exigir continuidade de serviço, considerar nível de protecção I, D= 20m. Nos edifícios com altura superior a 15 metros, considerar sempre Nível de protecção I (D=20m) a não ser que não haja valor patrimonial relevante nem ocupação.

A QEnergia editou um documento de apoio onde se explicam com mais detalhe os cálculos necessários para uma correcta avaliação do risco. Também está disponível o Índice Cereaunico e mapa isoceraúnico de Portugal. Se ainda não tem estes documentos não hesite em solicitá-los à QEnergia.

Certificação e homologação de pára-raios

O processo de homologação e certificação de pára-

de raios está detalhadamente descrito na NF e C 17-102, na UNE 21186 e na NP4426. A QEnergia preparou uma apresentação em Powerpoint que descreve este processo. Os testes são realizados num laboratório de alta tensão devidamente certificado. Um dos ensaios mais importantes é o cálculo do tempo de avanço à ignição que determina o raio de protecção. Este teste é feito no mínimo 100 vezes e compara os resultados do

IONIFLASH com uma clássica ponta de Franklin. Todos os pára-raios fornecidos pela QEnergia têm na embalagem o certificado que garante a conformidade com

as normas. Esse certificado refere o modelo e o número de série do pára-raios, assim como a data de fabrico.

Pára-raios IONIFLASH

Referência	Descrição	Material
1001A	Pára-raios IONIFLASH ΔT=129μs (inclui mastro 2,15m)	Aço Inox 316L
1001B	Pára-raios IONIFLASH ΔT=129μs (inclui mastro 2,15m)	Cobre
1001C	Pára-raios IONIFLASH ΔT=129μs (só cabeça)	Aço Inox 316L

O Aço Inox 316L apresenta níveis de resistência à corrosão muito superiores quando comparados com os aços inox mais comuns, como o aço 304, nomeadamente na presença de ambientes marítimos.

Pontas Captoras Franklin

Referência	Descrição	Material
1002A	Ponta captora Franklin; inclui mastro de 2,15m	Aço Inox 316L
1002B	Ponta captora Franklin; inclui mastro de 2,15m	Cobre

Mastros de Extensão

Referência	Descrição	Material
1003A	Mastro de extensão de 1 troço com 1,90m (Ht=4,05m)	Aço Inox
1003B	Mastro de extensão de 2 troços 3,65m (Ht=5,80m)	Aço Inox
1003C	Mastro de extensão de 3 troços 5,35 (Ht=7,5m)	Aço Inox

As extensões para mastro encaixam no mastro fornecido no pára-raios ou na ponta Franklin. Estas extensões podem ter 1, 2 ou 3 troços, sendo integralmente fabricadas em aço inox. A Norma Portuguesa NP 4426 obriga a que o captor esteja a uma altura superior em pelo menos 2 metros em relação a toda a zona a proteger.

Fixação Mural

Referência	Descrição	Material
1004A	Fixação mural para mastro	Aço galvanizado
1004B	Bucha e parafuso para fixação mural	Aço zincado
1004C	Fixação mural para mastro sem afastamento	Aço galvanizado
1004D	Fixação mural para mastro	Aço inox

Fixação de Encastrar

Referência	Descrição	Material
1005A	Fixação de encastrar para mastro	Aço galvanizado
1005B	Fixação de encastrar para mastro	Aço inox

Fixação Tubular e Roscada

Referência	Descrição	Material
1006A	Fixação tubular para mastro	Aço galvanizado
1006B	Fixação tubular para mastro sem afastamento	Aço galvanizado
1006C	Fixação tubular para mastro	Aço Inox
1006D	Fixação roscada para mastro	Aço galvanizado

Fixação por Cintas

Referência	Descrição	Material
1007A	Fixação por cintas	Aço zincado
1007B	Cintas (para utilizar com 1007A)	Aço galvanizado

Recomenda-se a utilização de 2 fixações para mastros até 4m e 3 para alturas superiores.

Tripé

Referência	Descrição	Material
1008A	Tripé para fixação de mastro	Aço galvanizado

Ornamentos

Referência	Descrição	Material
1009A	Galo decorativo com esfera	Cobre
1009C	Galo decorativo	Cobre
1009E	Galo decorativo gótico	Cobre
1009F	Pontos cardeais	Latão

Pontas Captoras para Gaiolas de Faraday

Referência	Descrição	Material
1010A	Ponta captora para Gaiola de Faraday de 30cm	Aço Inox
1010B	Ponta captora para Gaiola de Faraday de 50cm	Aço Inox

Fixação para Gaiolas de Faraday

Referência	Descrição	Material
1011A	Fixação para ponta captora por bucha e parafuso	Cobre/Aço inox
1011B	Fixação para ponta captora para encastrar	Cobre/Aço inox

A implementação de sistemas de Gaiola de Faraday deve obedecer à Norma IEC 62305.

Sinalização Luminosa

Referência	Descrição	Material
1012A	Luz solar autónoma para sinalização	
1012B	Suporte para luz solar de sinalização	
1012C	Comando para programação de luz solar de sinalização	
1012D	Luz solar autónoma para sinalização (bateria substituível)	

A solução de sinalização por luzes solares é inovadora e apresenta inúmeras vantagens, pois é completamente autónoma em termos de alimentação!

Vantagens:

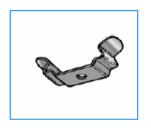
- Permite suprimir a utilização de cabos de alimentação, que são tradicionalmente difíceis de implementar neste tipo de situações.
- São absolutamente programáveis em todos os seus parâmetros (tempo de flash, sensor de luminosidade etc.).
- Tempo de vida útil de 5 a 8 anos
- Com apenas 1,5 horas de exposição à luz solar, permitem 300 horas de autonomia.
- Estão disponíveis em inúmeros formatos, tamanhos, e colorações de LEDs.
- A QEnergia tem à sua disposição uma completa gama de acessórios.

02. Acessórios de Baixada

Fixação para Condutor Plano ou Redondo

Referência	Descrição	Material
2001A	Fixação para condutor plano ou redondo	Plástico
2001B	Fixação para condutor plano ou redondo	Latão

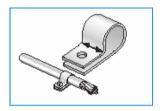
Grampos para Condutor Plano


Referência	Descrição	Material
2002A	Grampo para condutor plano	Aço galvanizado
2002B	Bucha para grampo	

Fixação para Condutor Plano

Referência	Descrição	Material
2003A	Fixação para condutor plano	Cobre estanhado

Clips para Fixação de Condutor Plano


Referência	Descrição	Material
2004A	Clip para fixação de condutor plano	Aço Inox

Clips para Condutor Redondo

Referência	Descrição	Material
2005A	Clip para fixação de condutor redondo	Plástico
2005B	Clip para fixação de condutor redondo Ø10mm	Plástico
2005C	Clip para fixação de condutor redondo (inclui parafuso)	Aço Inox

Fixação para Condutor Redondo

Referência	Descrição	Material
2006A	Fixação para condutor redondo	Cobre
2006B	Fixação para condutor redondo Ø10mm	Cobre

Fixoband

Referência	Descrição	Material
2007A	Fita Fixoband	Aço Inox
2007B	Grampo Fixoband	Aço Inox
2007C	Ferramenta de aplicação Fixoband	Aço Inox

Fixação de Tela

Referência	Descrição	Material
2008A	Fixação por tela isolante	Tela

Bloco de Suporte para Condutor Plano ou Redondo

Referência	Descrição	Material
2009A	Bloco de suporte para condutor plano ou redondo	Plástico e cimento

Fixação para Cumeeira

Referência	Descrição	Material
2011A	Fixação para cumeeira	Aço Inox

Fixação para Telhas

Referência	Descrição	Material
2012A	Fixação para telhas	Cobre
2012B	Fixação para telhas	Cobre estanhado

Fixação Tubular

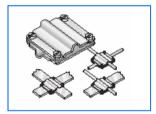
Referência	Descrição	Material
2013A	Fixação tubular para condutor redondo 50/80	Aço Inox
2013B	Fixação tubular para condutor redondo 70/120	Aço Inox
2013C	Fixação tubular para condutor redondo 130/180	Aço Inox
2013D	Fixação tubular para condutor redondo 50/80	Cobre
2013E	Fixação tubular para condutor redondo 70/120	Cobre
2013F	Fixação tubular para condutor redondo 130/180	Cobre

Ligadores de Condutor a Estrutura

Referência	Descrição	Material
2014A	Fixação de condutor redondo a viga	Aço galvanizado
2014B	Fixação de condutor redondo a goteira	Aço galvanizado

Ligadores de Condutor a Ferro de Estrutura

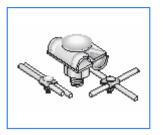
Referência	Descrição	Material
2015B	Fixação de condutor plano ou redondo Heliaço	Aço galvanizado

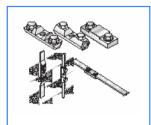

Ligadores de Condutor Plano e Redondo

Referência	Descrição	Material
2016A	Ligação de condutor plano-plano	Cobre estanhado
2016B	Ligador de condutor plano-redondo	Cobre estanhado

Ligadores Multiusos

Referência	Descrição	Material
2017A	Ligador multiusos	Aço Inox
2017B	Ligador multiusos	Aço galvanizado


Ligadores para Condutor Redondo


Referência	Descrição	Material
2018A	Ligador simples para condutor redondo	Latão
2018B	Ligador em T para condutor redondo	Latão
2018C	Ligador em olhal para condutor redondo	Latão

Ligadores Cruzados

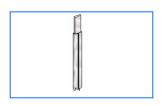
Referência	Descrição	Material
2019A	Ligador cruzado para condutor redondo	Aço Inox
2019B	Ligador cruzado para condutor redondo	Cobre
2019C	Ligador cruzado para condutor redondo	Aço galvanizado

Ligadores Bimetálicos

Referência	Descrição	Material
2020A	Ligador bimetálico para condutor plano	Aço Inox
2020B	Ligador bimetálico para condutor redondo	Aço Inox
2020C	Ligador bimetálico para condutor plano	Cobre/Alumínio

Deve evitar-se conectar matérias diferentes, pois pode provocar problemas de corrosão galvânica. As ligações mais problemáticas situam-se ao nível do Cobre-Alumínio e cobre-zinco. Nestes casos devem utilizar-se soldaduras aluminotérmicas (Capítulo 05) ou ligadores bimetálicos.

Contador de Descargas

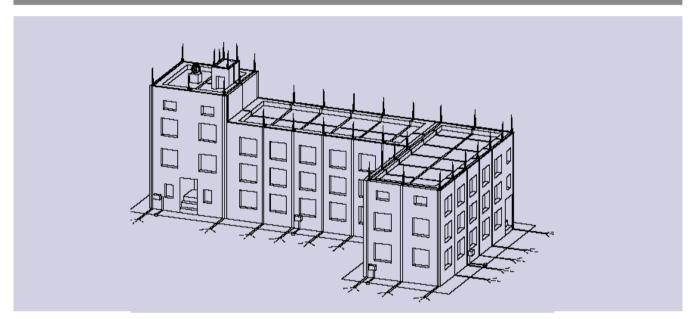

Referência	Descrição	Material
2021A	Contador de descargas digital	
2021B	Contador de descargas mecânico	

Ligador Amovível

Referência	Descrição	Material
2022A	Ligador amovível	Latão

Protecção de Baixada

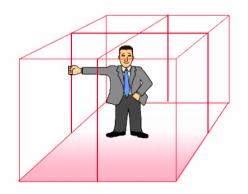
Referência	Descrição	Material
2023A	Protecção mecânica de baixada 2m	Aço galvanizado
2023B	Protecção mecânica de baixada 2m	Aço Inox


03. Condutores

s condutores assumem um papel de vital importância nos diversos sistemas de protecção contra descargas atmosféricas:

- Pontas de Franklin
- Pára-raios de avanço à ignição
- Gaiolas de Faraday

No que toca à constituição de sistemas de Gaiolas de Faraday, estes assumem-se como a base de funcionamento de todo o sistema.


Gaiola de Faraday - Princípio de funcionamento

o princípio consiste em dividir o mais vezes possível a corrente resultante de uma descarga atmosférica por uma rede de condutores.

Este tipo de sistema assegura de maneira segura e efectiva a dissipação da corrente associada ao processo da descarga.

A Gaiola de Faraday cria um meio equipotencial (Gaiola Equipotencial), isto é, como os condutores estão todos ligados entre si, não existe nenhuma diferença de potencial entre dois condutores.


Pela equipotencialização das malhas, a Gaiola de Faraday minimiza os riscos de sobretensões em equipamento sensível.

Varões de Cobre

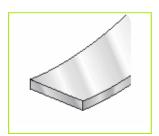
Referência	Descrição	Material
3002A	Varão Ø 8mm	Cobre estanhado
3002B	Varão Ø 8mm	Cobre

Barras de Cobre Estanhado

Referência	Descrição	Material
3003A	Fita 30x2mm	Cobre estanhado

A utilização de condutor de secção rectangular tem vantagens quando comparada com o condutor de secção circular. Como a corrente resultante de uma descarga atmosférica é impulsional o efeito pelicular não é desprezável. Este efeito faz com que a corrente se escoe na secção periférica do condutor. Um condutor de secção rectangular tem um perímetro maior que o condutor circular de secção equivalente, do que resulta uma impedância menor.

O condutor de cobre estanhado é recomendado pela Norma NP 4426 pelas suas propriedades condutoras e de resistência à corrosão.



Varões de Aço

Referência	Descrição	Material
3004A	Varão Ø 8mm	Aço galvanizado
3004B	Varão Ø 10mm	Aço galvanizado

Fitas de Aço

Referência	Descrição	Material
3005A	Fita 30x3.5mm	Aço galvanizado
3005B	Fita 30x2mm	Aço Inox

Trança de Cobre Estanhado

Referência	Descrição	Material
3006A	Trança 30x3,5mm (comprimento 50 cm)	Cobre estanhado

Curva Pré-formada

Referência	Descrição	Material
3007A	Cotovelos em fita pré-fabricados	Cobre estanhado

Materiais e dimensões segundo NP 4426:

	Materials & americas cognition in Traci		
۱	Condutores de baixada		
	Material	Observações	Dimensões
	Cobre electrolítico ou estanhado (1)	Recomendado pela sua boa condutividade eléctrica e resistência à corrosão.	Plano de 30x2 mm Redondo ø 8 mm (2) Trança plana 30x3,5 mm Redondo ø 10 mm (2)
	Aço inoxidável	Recomendado para certos ambientes corrosivos	Plano de 30x2 mm Redondo ø 8 mm (2) Redondo ø 10 mm(2)
	Alumínio a 5/T	Deve ser utilizado sobre superfícies de alumínio (caixilhos, portas, etc.)	Plano 30x3 mm Redondo ø 10 mm (2)

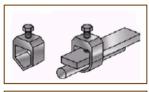
- 1. Recomenda-se o cobre estanhado devido às suas propriedades físicas, mecânicas e eléctricas (condutividade, permeabilidade, resistência à corrosão, etc.)
- 2. Dado o carácter de impulso da corrente do raio, o condutor plano é preferível ao condutor redondo, já que oferece uma maior superfície exterior para uma secção exterior.
- 3. Não se admite o uso de quaisquer tipos de cabos isolados, sejam estes coaxiais ou não, como condutores de baixada, nem o uso de tubos ou revestimentos isolantes revestindo as baixadas.

04. Redes de Terras

Eléctrodos de Terra

Referência	Descrição	Material
4001D	Eléctrodo em piquet 2,0m Ø 14,2mm	Aço cobreado 250 μm
4001H	Eléctrodo em piquet 1,5m Ø 15mm	Aço Inox
4001I	Eléctrodo em piquet 2m Ø 15mm	Aço Inox
4001J	Eléctrodo	Grafite

Uniões para Eléctrodos de Terra

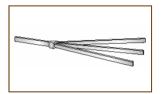

Referência	Descrição	Material
4002B	União para eléctrodo Ø 14,2mm	Bronze
4002D	União para eléctrodo Ø 15mm	Aço Inox

Batentes para Eléctrodos

Referência	Descrição	Material
4003B	Batente para eléctrodos Ø 14,2mm	Aço temperado
4003D	Batente para eléctrodos Ø 15mm	Aço temperado

Ligadores de Condutor a Eléctrodo

Referência	Descrição	Material
4004A	Ligador plano a eléctrodo	Bronze
4004B	Ligador redondo a eléctrodo	Bronze



Caixa de Visita

Referência	Descrição	Material
4005A	Caixa de visita	Plástico

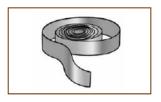
Pata de Galo

Referência	Descrição	Material
4007A	Pata de Galo	Cobre estanhado

Ligador Pata de Galo

Referência	Descrição	Material
4008A	Ligador Pata de Galo	Cobre

Placas e Grelhas de Cobre


Referência	Descrição	Material
4009A	Placa 600x600x3mm	Cobre
4009B	Placa 2000x1000x2mm	Cobre
4009C	Grelha 900x900x3mm	Cobre

Barras Colectoras de Terras

Referência	Descrição	Material
4011A	Barra colectora de terras de 16 furos (inclui isoladores)	Cobre estanhado
4011B	Barra colectora de 6 furos (inclui isoladores)	Cobre
4011C	Barra colectora de terras de 10 furos (inclui isoladores)	Cobre

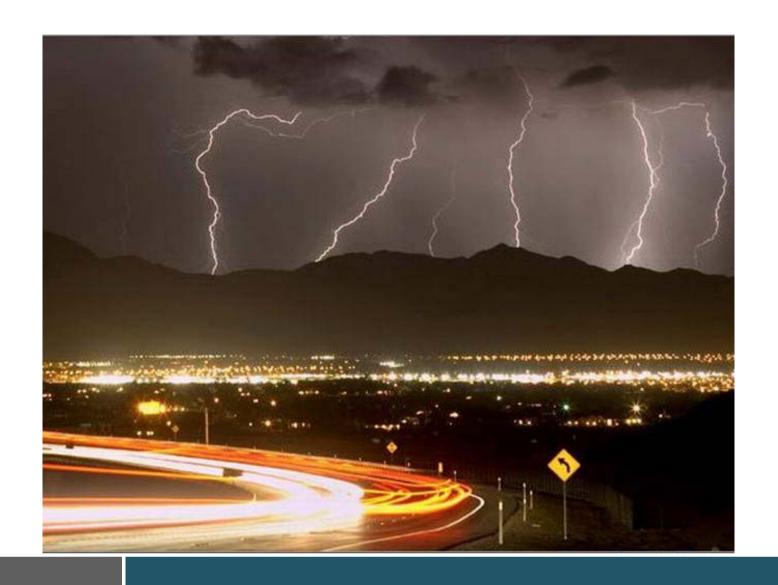
Fita Denso

Referência	Descrição	Material
4012A	Fita Denso	

Mecanismos para Aplicação de Eléctrodos

Referência	Descrição	Material
4013A	Mecanismo para aplicação de eléctrodos até Ø 14,2mm	
4013B	Mecanismo para aplicação de eléctrodos até Ø 17,2mm	

Mistura de Terra Vegetal GEM



Referência	Descrição	Material
4014A	GEM - Composto de terra vegetal	

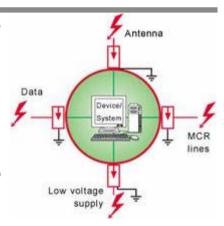
Explosor

Referência	Descrição	Material
4015A	Explosor	

05. Protecção Contra Sobretensões

os transitórios provocam danos consideráveis nos equipamentos eléctricos ou electrónicos, tal como nas instalações. Estes danos não abrangem só as instalações industriais ou comerciais, mas também áreas de edifícios particulares e os equipamentos nas nossas casas.

Sem medidas eficazes de protecção contra sobretensões, são de esperar custos consideráveis nos equipamentos danificados ou em reparações.

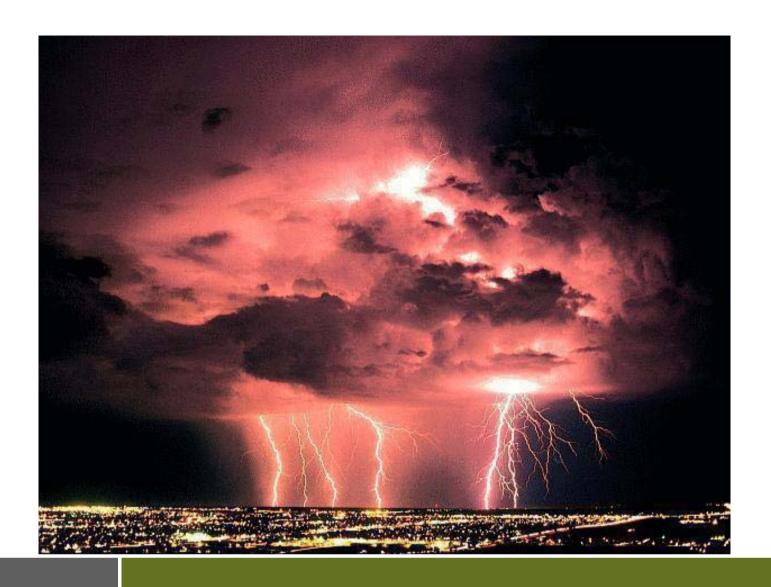

Assim, a aplicação de protecções contra sobretensões e/ou descargas atmosféricas é um investimento que se justifica por si só atendendo ao valor dos equipamentos que ficam protegidos. Enquanto não são excedidos os parâmetros das protecções, estes garantem a sua função, trazendo assim benefícios para o utilizador.

Esquema de protecção

esquema apresenta um sistema devidamente protegido em que estão contempladas as seguintes áreas:

- Alimentação eléctrica;
- Linhas de medida, comando e regulação;
- Linhas de dados;
- Telecomunicações:
- Emissores receptores.

As protecções podem ser instaladas em qualquer tipo de aplicação tendo em conta o sistema de ligação à terra.


Protecção contra sobretensões - Trabtech

Phoenix Contact foi a primeira a desenvolver a tecnologia AEC (Active Energy Control), que permite instalar lado a lado protecção tipo 1 (descargas atmosféricas) e tipo 2 (sobretensões de transitórios) sem necessitar dos tradicionais 10 m de cablagem ou as indutâncias de desacoplamento, reduzindo assim a cablagem e o espaço necessário, permitindo realizar poupanças significativas. Protecções com sinalização local e remota do estado de funcionamento constituídas por cartuchos encapsulados permitem alcançar vantagens absolutamente únicas neste mercado.

A Qenergia oferece toda a gama Phoenix Contact para protecção contra sobretensões. Temos uma equipa especializada para o aconselhar nas soluções mais indicadas para cada caso.

06. Medida Eléctrica e Serviços

Porquê realizar a ligação à terra?

xistem muitas razões pelas quais se deve realizar a ligação à terra: a mais importante prende-se com a protecção das pessoas. As organizações em seguida referidas são responsáveis pela elaboração de normas sobre a ligação à terra, que visam garantir a protecção das pessoas: Verband Deutscher Elektrotechniker - VDE (Associação Alemã de Electrotecnia), Österreichischer Verband für Elektrotechnik - ÖVE

(Associação Austríaca de Electrotecnia), Comissão Electrotécnica Internacional (IEC). Comité Europeu para a Normalização Electrotécnica (CENELEC), Underwriters Laboratories (UL). American National Standards Institute (ANSI). Telecommunications Industry Standard (TIA), entre muitas outras. Uma ligação à terra de qualidade não protege apenas as pessoas, mas também os equipamentos e as instalações. Um sistema de ligação à terra eficaz aumenta a fiabilidade dos equipamentos e reduz o perigo de danos causados por descargas atmosféricas ou correntes de fuga. Mas para perceber que sistema de terra temos e qual o seu estado é necessário MEDIR. Abaixo descrevemos dois dos principais métodos utilizados pelas equipas de técnicos da QEnergia.

Método de Medida Terra a 3 Pólos

método de 3 pólos é usado Segundo a Lei de Ohm: para medir a resistência de eléctrodos individuais, sistemas de aparelho. ligação à terra colocados em malha, potencial é medida com um voltímetro e a corrente é injectada por um amperímetro interno do estão integrados no UNILAP 100XE.

R = U/I; R é calculado pelo

Ligue o aparelho conforme ilustrado sistemas de ligação à terra nas na figura ao lado. Prima o botão fundações e outros sistemas de START e efectue a leitura directa da ligação à terra. A diferença de resistência de terra do eléctrodo medido. Se este eléctrodo estiver ligado em paralelo ou em série a outros eléctrodos, obterá o valor equipamento de medida. Ambos resultante para todos os eléctrodos (resistência de ligação à terra total).

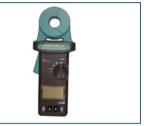
Nota:

O eléctrodo a ser medido precisa de ser desligado! É necessário colocar instalação fora de serviço.

colocação de sondas nas medições da ligação à terra é frequentemente perturbada ou impossibilitada por correntes de interferência e respectivas harmónicas. Os equipamentos de medida terra que comercializamos utilizam o método AFC (Automatic Frequency Control-Controlo automático de Frequência), o qual selecciona automaticamente a frequência de medição em que ocorre o mínimo de interferências possível, assegurando resultados perfeitos e reproduzíveis.

Método de Medida Terra Selectiva

_ste método único estruturas de ligação à terra em precisão possível. malha ou em grelha, utilizados seccionamento, postos de transformação, em postes de alta tensão com cabos de terra sistemas comerciais com múltiplos condutores. Através da medição da Não é necessário corrente de um eléctrodo individual instalação com uma pinça amperimétrica serviço! especial é possível eliminar a


foi influência de eléctrodos ligados em desenvolvido pela LEM NORMA paralelo. Um processo de avaliação para medir a resistência de terra de especial realiza o isolamento ou eléctrodos individuais, em sistemas filtragem digital de outras correntes, de ligação à terra complexos com de modo a permitir a máxima

Para a colocação de sondas em maioritariamente em postos de sistemas de ligação à terra simples ou complexos aplicam-se as mesmas regras que no método de medida terra a 3 pólos.

> colocar eléctrica fora

O eléctrodo a ser medido não precisa de ser desligado! Não é necessário colocar instalação fora de serviço.

Descrição

SE8115Z

Heme Geo 30 - Equipamento para medidas de terras

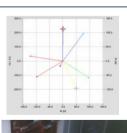
- Rápido, eficiente e simples na verificação de massas em anel sem nenhum eléctrodo de terra auxiliar, apenas com recurso a uma pinça.
- Medição de terra sem estacas. Não é necessário desligar o sistema de terras para realizar a medida.
- Ideal para obter diagnósticos em sistemas de múltiplas terras.
- Teste de continuidade não intrusivo com alarme (buzina)
- Gamas de corrente desde 200mA até 15A
- Alta precisão, leve, fácil utilização

Handy Geo - Equipamento para medidas de terras

- Medida de resistência de terra a 3 pólos estacas
- Medida da resistência AC a 2 pólos
- Limites configuráveis
- Retro-iluminado
- Borracha protectora e correia de transporte

Unilap 100XE - Equipamento para certificação de instalações eléctricas

- Teste a diferenciais. Com ou sem disparo. Selectivos.
- Entrada para pinça de corrente para medições de terra selectiva e sem estacas e medições de potência/ energia.
- Medida de impedância da malha de defeito F/F, F/N e F/T
- Medidas de resistência de isolamento
- Software SAT 100 Basic para exportação de dados e geração de relatórios. Memória para 512 blocos de medida.



Fluke 1653

Fluke 1653 - Equipamento para certificação de instalações eléctricas

- Medida de tensão e frequência
- Medida de terra (3 pólos)
- Medida da impedância malha defeito F/T, F/N,F/F
- Teste continuidade
- Medida de isolamento
- Teste de diferenciais (corrente disparo e tempo disparo RCDs)
- Sequência de fases
- Memória para dados
- Interface com software

Serviços

Serviços

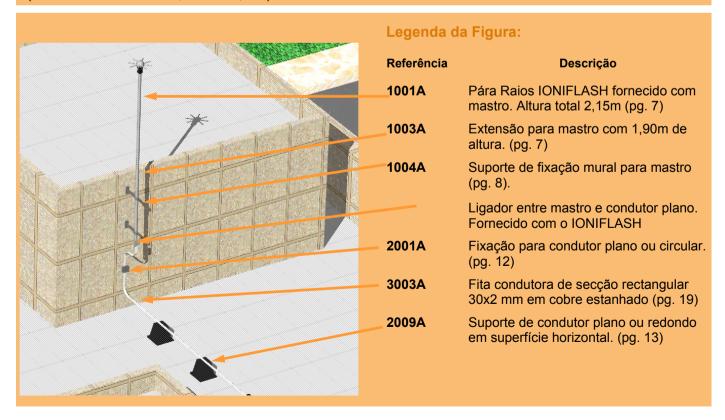
Auditoria e Inspecção a Sistemas de Protecção Contra Descargas Atmosféricas

Estudo e projecto de implementação de sistemas SPDA e redes de terras

Recolha de pára-raios radioactivos, de acordo com legislação vigente

Avaliação das condições de segurança e funcionamento de instalações eléctricas

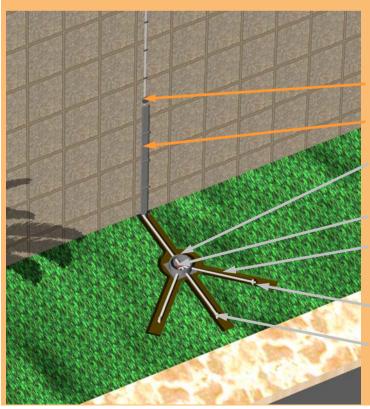
Auditoria eléctrica e monitorização da Qualidade da Energia


Formação

Exemplos de Aplicação

A specto geral de um pára raios IONIFLASH montado num edifício.

A ponta do IONIFLASH deve estar colocada 2 metros acima de qualquer superfície ou estrutura (cabines de elevadores, antenas, etc).



Exemplos de Aplicação

Legenda da Figura:

Referência	Descrição
2001A	Fixação para condutor plano ou circular. (pg. 12)

Legenda da Figura:

Referência	Descrição
- 2022A	Ligador amovível. Permite a medida da resistência de terra. (pg. 16)
2023A	Protecção do condutor de baixada. (pg. 16)
4005A	Caixa de visita. Permite a inspecção da ligação à terra. (pg. 23)
4008A	Ligador pata de galo. (pg. 23)
3003A	Fita condutora de secção rectangular 30 x2 (o mesmo que o da baixada). (pg.19)
4001D	Eléctrodos de terra. Utilização de pelo menos 3 por baixada. (pg. 22)
4004A	Ligador de condutor plano a eléctrodo. (pg. 22)

QENERGIA - SIST. PARA QUALIDADE E GESTÃO DE ENERGIA, LDA.

Pcta. Cesário Verde, 10, S/Cv. 2745-740 Massamá

Tel.: 214 309 320 • Fax: 214 309 299

E-mail: qenergia@qenergia.pt

INFOCONTROL - ELECTRÓNICA E AUTOMATISMO, LDA.

R. Da Lionesa, n.º 446, G37 4465-671 Leça do Balio

Tel.: 229 059 200 • Fax: 229 059 209

E-mail: geral@infocontrol.pt

NOVALEC - ELECTRÓNICA IND. DE PROTECÇÃO E COMANDO, LDA.

R. Vale de Lobos, Lt. 4, n.º 65, Guimarota 2411-901 Leiria

Tel.: 244 870 570 • Fax: 244 870 579

E-mail: novalec@novalec.pt